On the second cohomology group of a simplicial group
نویسندگان
چکیده
منابع مشابه
On the Second Cohomology Group of a Finite Group
We shall in fact prove it with C = 2. In the same situation, Aschbacher and Guralnick proved in Theorem A of [1] that \H\G, V)\<\V\. Guralnick has recently improved this bound to \H(G, V)\^\V\l, which is the best possible. At the present time, a proof of the intermediate result \H(G, V)\ «= |V|S is available in preprint form [13]. By using this result, it should be possible with a little extra ...
متن کاملthe impact of training on second language writing assessment: a case of raters’ biasedness
چکیده هدف اول این تحقیق بررسی تأثیر آموزش مصحح بر آموزش گیرندگان براساس پایایی نمره های آنها در پنج بخش شامل محتوا ، سازمان ، لغت ، زبان و مکانیک بود. هدف دوم این بود که بدانیم آیا تفاوتهای بین آموزشی گیرندگان زن و مرد در پایایی نمرات آنها وجود دارد. برای بررسی این موارد ، ما 90 دانشجو در سطح میانه (متوسط) که از طریق تست تعیین سطح شده بودند انتخاب شدند. بعد از آنها خواستیم که درباره دو موضوع ا...
15 صفحه اولModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملA Braided Simplicial Group
By studying the braid group action on Milnor’s construction of the 1-sphere, we show that the general higher homotopy group of the 3-sphere is the fixed set of the pure braid group action on certain combinatorially described group.
متن کاملSelf-injective Algebras and the Second Hochschild Cohomology Group
In this paper we study the second Hochschild cohomology group HH(Λ) of a finite dimensional algebra Λ. In particular, we determine HH(Λ) where Λ is a finite dimensional self-injective algebra of finite representation type over an algebraically closed field K and show that this group is zero for most such Λ; we give a basis for HH(Λ) in the few cases where it is not zero.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Homology, Homotopy and Applications
سال: 2010
ISSN: 1532-0073,1532-0081
DOI: 10.4310/hha.2010.v12.n2.a6